\qquad

C.U.SHAH UNIVERSITY

 Summer Examination-2017
Subject Name: Electromagnetics

Subject Code: 4TE06ELM1
Branch: B.Tech (EE,EEE)
Semester: 6
Date: 11/04/2017
Time: 02:30 To 05:30
Marks: 70
Instructions:
(1) Use of Programmable calculator \& any other electronic instrument is prohibited.
(2) Instructions written on main answer book are strictly to be obeyed.
(3) Draw neat diagrams and figures (if necessary) at right places.
(4) Assume suitable data if needed.

Attempt the following questions:

1) A unit vector has \qquad
A) Only DirectionB) Only Magnitude
C) Both magnitude and direction D) None of the above
2) If A and B are the vectors, then $A \times B=B \times A$
A) True
B) False
3) If ρ is a variable of Cylindrical co-ordinates, x and y are Cartesian co-ordinates, then \qquad
A) $\rho=x+y$ B) $\rho=\sqrt{x^{2}+y^{2}}$ C) $\left.\rho=x^{2}+y^{2} \mathrm{D}\right) \rho=x-y$
4) If A is a vector, then \qquad
A) $\left.A . A=1 \mathrm{~B}) A . A=0 \mathrm{C}) A . A=A^{2} \mathrm{D}\right) A . A=A$
5) The gradient of a scalar \boldsymbol{V} can be written as \qquad
A) $\nabla^{2} V$ B) $\quad V$ C) $\quad \nabla V$ D) $\nabla^{2} V^{2}$
6) The divergence of vector A can be written as \qquad
A) ∇A^{2}
B) $\nabla^{2} A$
C) $\nabla \times A$
D) $\nabla \mathrm{A}$
7) For point $\mathrm{P}(-2,6,3)$, cylindrical co-ordinates are \qquad
A) $\left.\mathrm{P}\left(6.31,108.43^{\circ}, 3\right) \mathrm{B}\right) \mathrm{P}\left(7,64.62^{\circ}, 108.43^{\circ}\right)$
C) $\left(10,90^{\circ}, 75^{\circ}\right)$ D) None of the above
8) Gauss Law is applicable to \qquad
A) Open surfaceB) Open and Closed Surface
C) Closed Surface D) None of the above
9) Laplace equation of a scalar V is given as \qquad
A) $\nabla^{2} V$ B) ∇V C) $-\nabla V$ D) None of the above
10) The equation for magnetic flux density is given by $\mathrm{B}=$ \qquad
A) $\frac{H}{\mu^{2}}$ B
B) $\frac{H}{\mu} \mathrm{C}$
C) $\frac{\mu}{H}$
D) $B=\mu H$
11) Points P and Q are located at $P(10,2,4)$ and $Q(-3,1,5)$ then distance between P and Q is \qquad
A) 13 B$) 5.2 \mathrm{C}) 0 \mathrm{D}) 10$
12) The relation between current density and electric field intensity is given by \qquad
A) $J=\frac{\sigma}{E}$
B) $J=\sigma E$
C) $J=\frac{E}{\sigma}$
D) $J=\sigma E^{2}$
13) For a cross product $a_{x} \times a_{y}=$ \qquad
A) a_{z} B) 0C) a_{x}
D) 1
14) Curl of $\mathrm{H}=$ \qquad
A) ∇H B) $\nabla \times H$ C) $\nabla^{2} H$
D) ∇H^{2}

Attempt any four questions from $\mathbf{Q}-2$ to $\mathbf{Q - 8}$

Attempt all questions

(a) If \vec{A} is a vector, give the equation for vector \vec{A} in circular cylindrical coordinates. Give the relationship between Cartesian co-ordinates (x, y, z) and cylindrical co-ordinates (ρ, \emptyset, z).
(b) Express the DEL (∇) operator in Cartesian and Circular cylindrical co-ordinates.

Q-3 Attempt all questions

(a) If Q_{1} and Q_{2} are the point charges are located at points having position vectors \vec{r}_{1} and \vec{r}_{2}, derive the equation of force \vec{F}_{12} on charge Q_{2} due to Q_{1}.
(b) Derive the equation for electric field intensity \vec{E} for a finite line charge with a uniform charge density ρ_{L}.

Q-4 Attempt all questions

(a) Derive the equation for electric flux density $\vec{D}=\frac{Q}{4 \pi r^{2}} \vec{a}_{r}$, where Q is the point charge.

(b) Explain the divergence theorem.

Q-5

Q-6
(a) Derive the equation of force $\vec{F}_{2}=\frac{\mu_{0} I_{1} I_{2}}{4 \pi} \oint\left[\oint \frac{\vec{a}_{R_{12}} \times d \vec{L}_{1}}{R_{12}^{2}}\right] \times d \vec{L}_{2}$ between two differential current elements. Where,
$\vec{F}_{2}=$ Force on element $2, \quad d \vec{L}_{1}=$ Differential length of element 1
$d \vec{L}_{2}=$ Differential length of element $2, I_{1}=$ Current through element 1
$I_{2}=$ Current through element $2, R_{12}=$ Distance between element 1 and 2
(b) If $\vec{A}=10 \vec{a}_{x}-4 \vec{a}_{y}+6 \vec{a}_{z}, \vec{B}=2 \vec{a}_{x}+\vec{a}_{y}$, Find
i) The component \vec{A} along \vec{a}_{y}
ii) The magnitude of $3 \vec{A}-\vec{B}$
iii)A unit vector along $\vec{A}+2 \vec{B}$
(a) For a co-axial cable at high frequencies, give the equation for capacitance,

Attempt all questions

(a) Derive the equation for magnetic field intensity with the help of Bio-Savart's law.
(b) Derive the equation of force $\vec{F}=I d \vec{L} \times \vec{B}$, where $d \vec{L}=$ Length of differential
element, $\vec{B}=$ magnetic flux density, $\mathrm{I}=$ current through differential element

Attempt all questions

 conductance, inductance and resistance.(b) Find the gradient of the following scalar fields:
i) $V=e^{-z} \sin 2 x \cosh y$
ii) $U=p^{2} z \cos 2 \phi$ iii) $W=10 r \sin ^{2} \theta \cos \phi$

Q-8
Attempt all questions
(a) Explain various types of antennas used for launching waves into space.
(b) Determine the divergence of the given vector fields.
i) $P=x^{2} y z a_{x}+x z a_{z}$ ii) $Q=\rho \sin \phi a_{p}+\rho^{2} z a_{\phi}+z \cos \phi a_{z}$

