Q-

C.U.SHAH UNIVERSITY **Summer Examination-2017**

Subject Name: Electromagnetics

Subject Code: 4TE06ELM1					Branch: B.Tech	Branch: B.Tech (EE,EEE)			
	Semest Instruct	er: 6	Dat	e: 11/04/2017	Time: 02:30 To 0	95:30	Marks: 70		
	(1) (2) (3) (4)	Use of Pr Instructio Draw nea Assume s	ogramm ons writte at diagrar suitable c	able calculator & en on main answe ns and figures (if lata if needed.	any other electronic instr er book are strictly to be of f necessary) at right places	rument is pro beyed. 3.	ohibited.		
1		Attem	ot the fol	llowing question	ns:			(14)	
	1)	A unit	vector ha	ıs					
		A) Onl C) Bot	y Directi h magnit	onB) Only Magn	nitude n D) None of the above				
	2)	If A an	d B are t	he vectors, then	$A \times B = B \times A$				
		A) True	e	B) False					
	3)	If ρ is	a variab	ole of Cylindrical	co-ordinates, x and y are	Cartesian c	o-ordinates,		
		then							
	4)	A) $\rho =$ If A is	x + y B) a vector,	$\rho = \sqrt{x^2 + y^2} C$ then) $\rho = x^2 + y^2 D \rho = x -$	у			
	5)	A) A. The gra	A = 1B) adjust of	A.A = 0C) $A.A =a scalar V can be$	A^2D $A.A = A$ e written as				
		A) ∇^2	$^{2}V B)$	$V C$) $\nabla V D$) ∇	$\overline{arphi}^2 V^2$				
	6)	The div	vergence	of vector A can l	be written as				
	7)	A) ∇A For poi	1^2 nt P(-? (B) $\nabla^2 A$	C) $\nabla \times A$	D) V	7 <i>A</i>		
	")	1 or por	III I (2, (o, <i>o</i>), oyintariour					
	8)	A) P (6 C) (10, Gauss I	.31, 108. 90° , 75° Law is ap	$(43^{\circ},3)B)$ P (7, 64) D) None of the soplicable to	4.62°, 108.43°) above				
		A) Ope	en surface	eB) Open and Cle	osed Surface				
		C) Clos	sed Surfa	ace D) None of th	ne above				
					Page 1 3				

	9)	Laplace equation of a scalar V is given as							
	A) $\nabla^2 V B$ $\nabla V C$ $-\nabla V D$ None of the above 10) The equation for magnetic flux density is given by B=								
	A) $\frac{H}{\mu^2}$ B) $\frac{H}{\mu}$ C) $\frac{\mu}{H}$ D) $B = \mu H$ 11) Points P and Q are located at P (10,2,4) and Q (-3,1,5) then distance betw and Q is								
	12)	A) 13 B) 5.2C) 0 D) 10 The relation between current density and electric field intensity is given by							
	13)	A) $J = \frac{\sigma}{E}$ For a cross product $a_r \times a_v =$ B) $J = \sigma E$ C) $J = \frac{\sigma}{\sigma}$ D) $J = \sigma E^2$							
	,	A) a_{x} B) 0C) a_{y} D) 1							
	14)	Curl of H =							
		A) ∇H B) $\nabla \times H$ C) $\nabla^2 H$ D) ∇H^2							
Attemp	ot any f	our questions from Q-2 to Q-8							
Q-2		Attempt all questions	(14)						
	(a)	If A is a vector, give the equation for vector A in circular cylindrical co-							
	ordinates. Give the relationship between Cartesian co-ordinates (x, y, z) and								
		cylindrical co-ordinates (ρ , \emptyset , z).							
	(b)	Express the DEL (∇) operator in Cartesian and Circular cylindrical co-ordinates.	07						
Q-3		Attempt all questions	(14)						
	(a)	If Q_1 and Q_2 are the point charges are located at points having position vectors	07						
		\vec{r}_1 and \vec{r}_2 , derive the equation of force \vec{F}_{12} on charge Q_2 due to Q_1 .							
	(b) Derive the equation for electric field intensity \vec{E} for a finite line charge with a uniform charge density ρ_{I} .								
Q-4		Attempt all questions	(14)						
	(a)	Derive the equation for electric flux density $\vec{D} = \frac{Q}{4\pi r^2} \vec{a}_r$, where Q is the point							
		charge.							

Page 2 || 3

(b) Explain the divergence theorem.

Q-5 Attempt all questions

- Derive the equation for magnetic field intensity with the help of Bio-Savart's law. 07 **(a)**
- Derive the equation of force $\vec{F} = Id\vec{L} \times \vec{B}$, where $d\vec{L}$ =Length of differential 07 **(b)** element, \vec{B} =magnetic flux density, I= current through differential element

Attempt all questions Q-6

(a)

Derive the equation of force
$$\vec{F}_2 = \frac{\mu_0 I_1 I_2}{4\pi} \oint \left[\oint \frac{\vec{a}_{R_{12}} \times d\vec{L}_1}{R_{12}^2} \right] \times d\vec{L}_2$$
 between two

differential current elements. Where,

 \vec{F}_2 = Force on element 2, $d\vec{L}_1$ =Differential length of element 1

 $d\vec{L}_2$ = Differential length of element 2, I_1 = Current through element 1

 I_2 = Current through element 2, R_{12} = Distance between element 1 and 2

(b) If
$$\vec{A} = 10\vec{a}_x - 4\vec{a}_y + 6\vec{a}_z$$
, $\vec{B} = 2\vec{a}_x + \vec{a}_y$, Find **07**

- The component \vec{A} along \vec{a}_y i)
- The magnitude of $3\vec{A} \vec{B}$ ii)

iii) A unit vector along $\vec{A} + 2\vec{B}$

Q-7 Attempt all questions

- For a co-axial cable at high frequencies, give the equation for capacitance, 07 **(a)** conductance, inductance and resistance.
- **(b)** Find the gradient of the following scalar fields: 07

i)
$$V = e^{-z} \sin 2x \cosh y$$
 ii) $U = p^2 z \cos 2\phi$ iii) $W = 10r \sin^2 \theta \cos \phi$

Q-8 Attempt all questions

- 07 Explain various types of antennas used for launching waves into space. **(a)** 07
- **(b)** Determine the divergence of the given vector fields.

i) $P = x^2 yza_x + xza_z$ ii) $Q = \rho \sin \phi a_p + \rho^2 za_{\phi} + z \cos \phi a_z$

Page 3 || 3

(14)

(14)

(14)

(14)

